wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y= secx+tanx, then prove that d2ydx2=cosx(1sinx)2

Open in App
Solution

Given, y=secx+tanx
dydx=secx×tanx+sec2x
d2ydx2=secx×(sec2x)+tanx×(secx×tanx)+2secx×secx×tanx
d2ydx2=sec3x+secxtan2x+2sec2xtanx
d2ydx2=secx(sec2x+tan2x+2secxtanx)
d2ydx2=secx(secx+tanx)2
Putting secx=1cosx and tanx=sinxcosx and solving,
d2ydx2=1cosx(1cosx+sinxcosx)2
=(1+sinx)2cosx×cos2x
=(1+sinx)2cosx×(1sin2x)
=1cosx[1+sinx1sinx]
Multiply and divide by (1sinx), we get
1cosx[1sin2x(1sinx)2]
=cosx(1sinx)2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Higher Order Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon