wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=sin1(2x1+x2), find the value of dydx.

Open in App
Solution

Let y=sin1(2x1+x2)

We need to find dydx.

Let u=2x1+x2,f=sin1(u)

Apply chain rule: df(u)dx=dfdududx

df(u)dx=ddu(sin1(u))ddx(2x1+x2)

=11u22((1+x2)(1)2x(x)(1+x2)2)

=11u22(1+x22x2(1+x2)2)

=11u22(1x2(1+x2)2)

df(u)dx=11u22(1x2)(1+x2)2

Substitute back u=2x1+x2 we get

dydx=11(2x1+x2)22(1x2)(1+x2)2

=2(1+x2)2(1x2)(1+x2)24x2(1+x2)2

=2(1+x2)2(1x2)(x+1)2(x1)2(1+x2)2

=2(1+x2)(1x2)(x+1)2(x1)2(1+x2)2

dydx=2(1x2)(x+1)2(x1)2(1+x2)

dydx=2(1x)(1+x)(x+1)(x1)(1+x2)

dydx=2(1+x2)



flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Sum of Coefficients of All Terms
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon