wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=sin1x, show (1x2)d2ydx2xdydx=0

Open in App
Solution

y=sin1x
dydx=11x2 ..(1)
d2ydx2=ddx(11x2)=1(1x2)2×ddx(1x2)=11x2×121x2×ddx(1x2)
d2ydx2=x(1x2)32..(2)
Now substituting value from (1) and (2) in,
(1x2)d2ydx2xdydx we get,
(1x2)×x(1x2)32x×11x2
x1x2x1x2
0=RHS
Hence proved

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Higher Order Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon