If y=sin(sinx),thend2ydx2+tanxdydx+ycos2x will be equal to
A
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
-1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
\N
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D \N Let’s evaluate different terms of the expression and then we will substitute them. Let’s see what comes out. d2ydx2willbeddx(dydx).
So d2yd(x)2=ddx(ddx(sin(sinx))) ddx(sin(sinx))=cos(sinx)cosx -------(1) (Using chain rule)
Now d2ydx2=ddx(cos(sinx).cosx) d2ydx2=[cos(sinx)(−sinx)+cosx(−sin(sinx)cosx] (Using product rule and chain rule) d2ydx2=−[sinxcos(sinx)+cos2xsin(sinx)] d2ydx2=−[sinxcosxcosxcos(sinx)+cos2xsin(sin(x))] d2ydx2=−[tanx×dydx+cos2xsin(sin(x))] (Using equation (1))
or d2ydx2+dydxtanx+cos2x×y=0 (as sin (sin(x)) = y)