If y=sin(sinx),thend2ydx2+tanxdydx+ycos2x will be equal to
A
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
-1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
0.0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D 0.0 Let’s evaluate different terms of the expression and then we will substitute them. d2ydx2=ddx(dydx) So d2ydx2=ddx(ddx[sin(sinx)]) ddx(sin(sinx))=cos(sinx).cosx Now d2ydx2=ddx(cos(sinx).cosx) d2ydx2=[cos(sinx)(−sinx)+cosx(−sin(sinx)cosx] d2ydx2=−[sinx.cos(sinx)+cos2x.sin(sinx)] d2ydx2=−[sincosxcosx.cos(sinx)+cos2x.sin(sin(x))] d2ydx2=−[tanx×dydx+cos2x.sin(sinx)] d2ydx2+dydxtanx+cos2x×y=0 (as sin (sin x) = y)