If y=sinx[1sinx⋅sin2x+1sin2xsin3x+…+1sinnxsin(n+1)x] then dydx=
A
cotx−cot(n+1)x
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(n+1)cosec2(n+1)x−cosec2x
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
csc2x−(n+1)cosec2(n+1)x
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
cotx+cot(n+1)x
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C(n+1)cosec2(n+1)x−cosec2x y=[1sinxsin2x+1sin2xsin3x+...........+1sinnxsin(n+1)x]y=[sinxsinxsin2x+sinxsin2xsin3x+...........+sinxsinnxsin(n+1)x]y=[sin(2x−x)sin2xsinx+sin(3x−2x)sin3xsin2x+...........+sin(n+1)x−nxsin(n+1)xsinnx]y=[sin(2x)cosx−cos2xsinxsin2xsinx+sin(3x)cos2x−cos3xsin2xsin3xsin2x+...........+sin(n+1)xcosnx−cos(n+1)xsinxsin(n+1)xsinnx]y=[sin(2x)cosxsin2xsinx−cos2xsinxsin2xsinx+sin(3x)cos2xsin2xsinx−cos3xsin2xsin3xsin2x+...........+sin(n+1)xcosnxsin(n+1)xsinnx−cos(n+1)xsinxsin(n+1)xsinnx]y=[cosxsinx−cos2xsin2x+cos2xsin2x−cos3xsin3x+.....+cosnxsinnx−cos(n+1)xsin(n+1)x]y=[cotx−cot2x+cot2x−cot3x+...cotnx−cot(n+1)x]y=[cotx−cot(n+1)x]dydx=−cosec2x−(−cosec2(n+1)x)(n+1)dydx=(n+1)cosec2(n+1)x−cosec2x