wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=sinx[1sinxsin2x+1sin2xsin3x+ +1sinnxsin(n+1)x] then dydx=

A
cotxcot(n+1)x
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(n+1)cosec2(n+1)xcosec2x
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
csc2x(n+1)cosec2(n+1)x
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
cotx+cot(n+1)x
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C (n+1)cosec2(n+1)xcosec2x
y=[1sinxsin2x+1sin2xsin3x+...........+1sinnxsin(n+1)x]y=[sinxsinxsin2x+sinxsin2xsin3x+...........+sinxsinnxsin(n+1)x]y=[sin(2xx)sin2xsinx+sin(3x2x)sin3xsin2x+...........+sin(n+1)xnxsin(n+1)xsinnx]y=[sin(2x)cosxcos2xsinxsin2xsinx+sin(3x)cos2xcos3xsin2xsin3xsin2x+...........+sin(n+1)xcosnxcos(n+1)xsinxsin(n+1)xsinnx]y=[sin(2x)cosxsin2xsinxcos2xsinxsin2xsinx+sin(3x)cos2xsin2xsinxcos3xsin2xsin3xsin2x+...........+sin(n+1)xcosnxsin(n+1)xsinnxcos(n+1)xsinxsin(n+1)xsinnx]y=[cosxsinxcos2xsin2x+cos2xsin2xcos3xsin3x+.....+cosnxsinnxcos(n+1)xsin(n+1)x]y=[cotxcot2x+cot2xcot3x+...cotnxcot(n+1)x]y=[cotxcot(n+1)x]dydx=cosec2x(cosec2(n+1)x)(n+1)dydx=(n+1)cosec2(n+1)xcosec2x

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon