We have,
y=√1−x1+x
On differentiating both sides w.r.t x, we get
dydx=12√1−x1+x×((1+x)(0−1)−(1−x)(0+1)(1+x)2)
dydx=12√1+x1−x×(−(1+x)−(1−x)(1+x)2)
dydx=12√1+x1−x×(−1−x−1+x(1+x)2)
dydx=12√1+x1−x×(−2(1+x)2)
dydx=−1y×1(1+x)2
dydx=−1y(1+x)2
Hence, this is the answer.