wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=tan-1 1+x-1-x1+x+1-x, find dydx.

Open in App
Solution

Here, y=tan-11+x-1-x1+x+1-xPut x=cos2θ y=tan-11+cos2θ-1-cos2θ1+cos2θ+1-cos2θ =tan-12 cos2θ-2 sin2θ2 cos2θ+2 sin2θ =tan-12cosθ-sinθ2cosθ+sinθ =tan-1cosθ-sinθcosθcosθ+sinθcosθ Dividing numerator and denominator by cosθ =tan-1cosθcosθ-sinθcosθcosθcosθ+sinθcosθ =tan-11-tanθ1+tanθ

=tan-1tanπ4-tanθ1+tanπ4×tanθ =tan-1tanπ4-θ =π4-θ =π4-12cos-1x Using x=cos2θ

Differentiate it with respect to x,

dydx=0-12-11-x2dydx=121-x2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon