wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=tan−11x2+x+1+tan−11x2+3x+3+tan−11x2+5x+7+..... to n terms, then

A
dydx=11+(x+n)211+x2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
dydx=1(x+n)211+x2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
dydx=11+(x+n)2+11+x2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A dydx=11+(x+n)211+x2
y=tan11x2+x+1+tan11x2+3x+3+tan11x2+5x+7+ .... to n terms


=tan1{11+x(x+1)}+tan1{11+(x+1)(x+2)}+tan1{11+(x+2)(x+3)}+.....+tan1{11+(x+n1){x+n}}


=tan1{(x+1)x1+(x+1)x}+tan1{(x+2)(x+1)1+(x+2)(x+1)}+tan1{(x+3)(x+2)1+(x+3)(x+2)}+.....+tan1{(x+n)(x+n1)1+(x+n)(x+n1)}

y={tan1(x+1)tan1(x)}+{tan1(x+2)tan1(x+1)}+{tan1(x+3)tan1(x+2)}+.....


+{tan1(x+n)tan1(x+n1)}
y=tan1(x+n)tan1(x)

On differentiating both the sides w.r.t. x, we get

dydx=11+(x+n)211+x2

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Parametric Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon