wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=tan1⎜ ⎜lnex2lnex2⎟ ⎟+tan13+2lnx16lnx then

A
dydx=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
d2ydx2=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
dydx=2x(1+ln2x)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
dydx=1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A dydx=0
Given y=tan1⎜ ⎜ ⎜lnex2lnex2⎟ ⎟ ⎟+tan1(3+2lnx16lnx)
tan1⎜ ⎜ ⎜lnex2lnex2⎟ ⎟ ⎟=tan1(12lnx1+2lnx)
Let tanθ1=1,tanθ2=2lnx
=tan1(tanθ1tanθ21+tanθ1tanθ2)
=tan1(tan(θ1θ2))
=(θ1θ2)+nπ
tan1(3+2lnx16lnx)=tan1(3+2lnx1(3)(2)lnx)
Let tanθ3=3
=tan1(tanθ2tanθ21+tanθ3tanθ2)
=tan1(tan(θ2+θ3))
=(θ2+θ3)+kπθ3ϵ(0,π2);kϵz
y=(θ1θ2)+nπ+(θ2+θ3)+kπ
=tan1(1)+tan1(3)+(n+k)π
As y is constant, dydx=0

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Standard Values of Trigonometric Ratios
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon