The correct option is A 0
Taking log on both sides, we get
logy=(tanx)tanxlogtanx
Again taking log on both the sides
loglogy=[tanxlogtanx]+loglogtanx
Differentiating w.r.t. x, we get
1ylogydydx=logtanxddx(tanx)+tanxddx(logtanx)+ddx(loglogtanx)
dydx=logtanx.sec2x+tanx.sec2xtanx+sec2xtanx.logtanx
dydx=ylogy.sec2x[logtanx+1+1tanx.logtanx]
At x=π4, y=1 and logy=0
So, putting this values in the equation of dydx, we get
∴(dydx)x=π4=0