We have,
y=x+ex
On differentiating both sides w.r.t x, we get
dydx=1+ex
dxdy=1(1+ex)
On differentiating both sides w.r.t y, we get
d2xdy2=(1+ex)×0−1×(0+ex)(1+ex)2×dxdy
d2xdy2=−ex(1+ex)2×1(1+ex)
d2xdy2=−ex(1+ex)3
Hence, this is the answer.
If y=sin x+ex,then d2xdy2=