yx=ey−x
xlogy=y−x --- (1)
Differentiate with respect to x,
⇒logy+x.1ydydx=dydx−1
From equation (1), xy=11+logy
⇒logy+1=dydx(1−xy)
⇒logy+1=dydx(1−11+log y)
⇒logy+1=dydx(logy1+logy)
⇒dydx=(1+logy)2logy
Hence proved.
If xy=ex−y,then dydx=