The correct option is B (xdydx−y)2
From the given relation y=xlog(xa+bx)
yx=logx−log(a+bx)
On differentiating w.r.t x, we get
(xdydx−y)x2=1x−1a+bxb
Therefore, xdydx−y=axa+bx ...(i)
Again differentiating both sides w.r.t x we get
xd2ydx2+dydx−dydx=(a+bx)a−axb(a+bx)2
⇒x3d2ydx2=a2x2(a+bx)2=(xdydx−y)2 ..... (from Eq(i))