The correct option is C Number of values of x for which y(x)=−1 in (0,2π) is two.
dydx+(2tanx)y=sinx (Linear differential equation)
∴I.F.=e2∫tanxdx=e2ln(secx)=sec2x
So, general solution is
y⋅sec2x=∫sinxcos2xdx+C⇒y⋅sec2x=secx+C
Now, y(π3)=0⇒C=−2
⇒y(x)=cosx−2cos2x
Differentiate w.r.t. to x
y′(x)=−sinx+4cosx⋅sinx
y′(π6)=−12+4×√32×12=2√3−12
y(π)=cosπ−2cos2π=−3
y(x)=−1⇒cosx−2cos2x=−1⇒2cos2x−cosx−1=0
⇒(2cosx+1)(cosx−1)=0
⇒cosx=−12 or cosx=1
But x∈(0,2π), so x=2π3,4π3
π/2∫0y(x)dx=π/2∫0(cosx−2cos2x)dx=π/2∫0(cosx−1−cos2x)dx=[sinx−x−sin2x2]π/20=1−π2