If y=y(x),y∈[0,π2) is the solution of the differential equation secydydx−sin(x+y)−sin(x−y)=0 with y(0)=0, then 5y′(π2) is equal to
Open in App
Solution
Given: secydydx−sin(x+y)−sin(x−y)=0 ⇒secydydx−2sin(x)⋅cos(y)=0 ⇒sec2ydy=2sinxdx ⇒tany=−2cosx+C
Since y(0)=0, therefore C=2 ∴tany=−2cosx+2
Put x=π2 ⇒tany=2 ⇒cosy=1√5
Now, dydx=2sinx⋅cos2y
Put x=π2, we have y′(π2)=2⋅(15) ∴5y′(π2)=2