If z1=a+ib and z2=c+id are complex numbers such that |z1|=|z2|=1 and Re(z1¯¯¯¯¯z2)=0, then the pair of complex numbers w1=a+ic and w2=b+id satisfy
A
|w1|=1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
|w2|=1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
Re(w1¯¯¯¯¯¯w2)=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
Alltheabove
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct options are A|w1|=1 B|w2|=1 CRe(w1¯¯¯¯¯¯w2)=0 z1=a+ib|z1|=1z2=c+id|z2|=1Re(z1¯z2)=0 z1=a+ib=cis(A)=cosA+isinA ..{∵|z1|=1} z2=c+id=cis(B)=cosB+isinB ...{∵|z2|=1} ⟹a=cosA&b=sinA Re(cis(A)cis(−B))=0⟹cos(A−B)=0⟹A−B=π2 ⟹z2=cos(A−π2)+isin(A−π2)=sinA−icosA ⟹c=sinA&d=−cosA w1=a+ic=cosA+isinA=cisAw2=b+id=sinA−icosA=−i(isinA+cosA)=−icis(A) ⟹|w1|=1&|w2|=1w1¯w2=icisAcis(−A)=i⟹Re(w1¯w2)=0 Hence, options A,B and C are correct.