The correct options are
A |ω1|=1
B |ω2|=1
C Re(ω1¯¯¯¯¯¯ω2)=0
z1=a+ib&z2=c+id such that |z1|=|z2|=1
Let z1=cosA+isinA=cisA&z2=cosB+isinB=cisB
⇒a=cosA,b=sinA,c=cosB,d=sinB
Re(z1¯z2)=0⇒Re(cisAcis(−B))=0⇒Re(cis(A−B))=0⇒cos(A−B)=0⇒A−B=π2
w1=a+ic=cosA+icosB⇒w1=cosA+icos(A−π2)=cosA+isinA=cisA⇒|w1|=1
w2=b+id=sinA+isinB⇒w2=sinA+isin(A−π2)=sinA−icosA=−icisA⇒|w2|=1
w1¯w2=−icisAcis(−A)=−i⇒Re(w1¯w2)=0
Ans: A,B,C