If z1 and z2 are complex numbers, prove that |z1+z2|2=|z1|2+|z2|2 if and only is z1¯z2 is pure imaginary.
Open in App
Solution
|z1+z2|2=|z1|2+|z2|2+2Re(z1¯¯¯z2) If z1¯¯¯z2 purely imaginary, then Re(z1¯¯¯z2)=0 ∴|z1+z2|2=|z1|2+|z2|2 ......(2) Conversely if (1) holds, then Re(z1¯¯¯z2)=0 It means that z1¯¯¯z2 is purely imaginary.