If z1 and z2 are two complex numbers, then the inequality |z1+z2|2≤(1+c)|z1|2+(1+c−1)|z2|2 is true if
A
c∈R
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
c∈(0,∞)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
c∈R−{0}
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
c∈(−∞,0)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Bc∈(0,∞) |z1+z2|2≤(1+c)|z1|2+(1+c−1)|z2|2 [∵|z1+z2|2=|z1|2+|z2|2+2Re(z1¯¯¯¯¯z2)] ⇒|z1|2+|z2|2+2Re(z1¯¯¯¯¯z2)≤(1+c)|z1|2+(1+c−1)|z2|2 ⇒2Re(z1¯¯¯¯¯z2)≤c|z1|2+c−1|z2|2 ⇒c|z1|2+1c|z2|2−2Re(z1¯¯¯¯¯z2)≥0 ⇒|√cz1|2+∣∣∣1√cz2∣∣∣2−2Re(√cz11√c¯¯¯¯¯z2)≥0 [∵|z1−z2|2=|z1|2+|z2|2−2Re(z1¯¯¯¯¯z2)] ⇒∣∣∣√cz1−z2√c∣∣∣2≥0
which is true for c∈(0,∞)