If z1,z2,z3 are the vertices of an isosceles triangle and right angled at z2, then
A
z21+z23+2z22=2(z1+z3)z2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
z21+z23+2z22=2(z1+z3−z2)z2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
(z1−z2)2+(z2−z3)2=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
z1−z2z2−z3 is imaginary
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct options are Az21+z23+2z22=2(z1+z3)z2 Bz21+z23+2z22=2(z1+z3−z2)z2 C(z1−z2)2+(z2−z3)2=0 Dz1−z2z2−z3 is imaginary Given AB=BC (isosceles triangle), ∠B=900
∴∠C=∠A=π4
∴z3−z1z2−z1=ACABeiπ/4=√2eiπ/4 ...(1)
z2−z3z1−z3=BCACeiπ/4=1√2eiπ/4
...(2)
From equations (1) and (2), we get
(z3−z1z2−z1)(z2−z3z1−z3)=√2eiπ/41√2eiπ/4=2