wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If z1,z2,z3 are unlmodular complex numbers then the greatest value of |z1−z2|2+|z2−z3|2+|z3−z1|2 equal to

A
3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
6
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
9
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
272
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A 3
Given z1,z2,z3 are unlmodular complex numbers.
Then |z1|=1,|z2|=1,|z3|=1
Now |z1z2|2+|z2z3|2+|z3z1|2
=(z1z2)(¯z1z2)+(z2z3)(¯z2z3)+(z3z1)(¯z3z1)
[|z|2=z¯z]
(z1z2)(¯z1¯z2)+(z2z3)(¯z2¯z3)+(z3z1)(¯z3¯z1)
=z1¯z1z1¯z2z2¯z1+z2¯z2+z2¯z2z2¯z3z3¯z2+z3¯z3+z3¯z3z3¯z1z1¯z3+z1¯z1
=1+2re(z1¯z2)+1+1+2Re(z2¯z3)+1+1+2Re(z3¯z1)+1[Re(z)=z+¯zz2]
6+2|z1¯z2|+2|z2¯z3|+2|z3¯z1
=6+2|z1||¯z2|+2|z2||¯z3|+2|z3||¯z1
=6+2|z1||¯1z2|+2|z2||¯1z3|+2|z3||¯z1|
=6+2+2+2[|z|=121|z|=|z|]
=12
$ the greatest value of the given exception is 12.

1215132_1386056_ans_35a86a9c437f4bc197b4ce8507e49c8d.JPG

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Geometric Representation and Trigonometric Form
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon