The correct options are
A (−2,1)
B (−1,0)
D (−2,3)
Let x be a real root.
Then x3+(3+2i)x+(−1+ia)=0
⇒(x3+3x−1)+i(a+2x)=0
Comparing real and imaginary parts, we get
a+2x=0 and x3+3x−1=0
⇒(−a2)3+3(−a2)−1=0
⇒a3+12a+8=0
Let f(a)=a3+12a+8
Since, f(a) is increasing functions.
So, check the sign of f(a) at the end points of the given intervals.
f(−2)=−2<0
f(−1)=−5<0
f(0)=8>0
f(1)=21>0
f(3)=71>0
∴ By using Intermediate value theorem, possible intervals are (−2,1),(−1,0),(−2,3)