wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If z=3−4i, then z4−3z3+3z2+99z−95 is equal to

A
5
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
6
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
5
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A 5
The given polynomial z43z3+3z2+99z95 can be simplified as follows:

z43z3+3z2+99z95=z43z3+3z2z+100z95=z(z33z2+3z1+100)95=z[(z33z2+3z1)+100]95=z[(z1)3+100]95((ab)3=a3b33a2b+3ab2)

Since z=34i, therefore, we have:

z[(z1)3+100]95=(34i)[(34i1)3+100]95=(34i)[(24i)3+100]95=(34i)[(2(12i))3+100]95=(34i)[8(13(2i)3(3×12×2i)+(3×1×(2i)2)+100]95
((ab)3=a3b33a2b+3ab2)=(34i)[8(18i36i+12i2)+100]95(i2=1)=(34i)[8(18i6i12)+100]95=(34i)[8(2i11)+100]95=(34i)(16i88+100)95=(34i)(16i+12)95
=4(34i)(3+4i)95=4(32(4i)2)95(a2b2=(a+b)(ab))=4(916i2)95=4(9+16)95(i2=1)=(4×25)95=10095=5

Hence, z43z3+3z2+99z95=5, if z=34i.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Division of Algebraic Expressions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon