Solution:-
Z=cosθ+isinθ
∴Z1−2Z=cosθ+isinθ1−2(cosθ+isinθ)
⇒=cosθ+isinθ(1−2cosθ)−2isinθ
Multiplying and dividing by the conjugate of denominator, we have
Z1−2Z=cosθ+isinθ(1−2cosθ)−2isinθ×(1−2cosθ)+2isinθ(1−2cosθ)+2isinθ
⇒=(cosθ+isinθ)((1−2cosθ)+2isinθ)(1−2cosθ)2−(2isinθ)2
⇒=cosθ(1−2cosθ)−2sin2θ+i(sinθ(1−2cosθ)+2sinθcosθ)1+4cos2θ−4cosθ−(−4sin2θ)
⇒=cosθ−2cos2θ−2sin2θ+i(sinθ−2sinθcosθ+2sinθcosθ)1−4cosθ+4cos2θ+4sin2θ
⇒=cosθ−2(cos2θ+sin2θ)+isinθ1−4cosθ+4(cos2θ+sin2θ)
⇒=(cosθ−2)+isinθ5−4cosθ
Hence, the complex representation of Z1−2Z will be (cosθ−2)+isinθ5−4cosθ.