If z is a complex number satisfying z4+z3+z2+z+1=0, then |z| is equal to ____.
Open in App
Solution
Given that, z4+z3+z2+z+1=0 ⇒z5−1z−1=0...(sum of G.P) ⇒z5=1 ⇒|z|=1 OR z4+z3+z2+z2+z+1=0 ⇒(z2+(z2+z+1)+(z2+z+1))=0 ⇒(z2+z+1)(z2+1)=0 ∴z=i,−1,ω,ω2. For each , |z|=1.