The correct option is D 169
Let z=x+iy
Then, we have z+|z|=8+12i
⇒(x+iy)+|x+iy|=8+12l
⇒(x+√x2+y2)+iy=8+12i
On comparing the real and imaginary part, we get
y=12
and x+√x2+y2=8
⇒√x2+144=8−x
On squaring both sides, we get
x2+144=64+x2−16x
⇒16x=−80
⇒x=−5
∴z=x+iy=−5+i⋅12
Then, |z|=√25+144=√169=13
⇒|z|2=169
⇒|z2|=169(∵|zn|=|z|n).