If z=x+iy,|3z−1|=3|z−2| and then locus of z is?
Given:
z=x+iy
|3z−1|=3|z−2| …… (1)
Substitute the value of z in equation (1).
|3(x+iy)−1|=3|(x+iy)−2|
Simplify the above equation.
|3x+3iy−1|=3|(x+2)+iy|
|(3x−1)+3iy|=3|(x+2)+iy|
√(3x−1)2+(3iy)2=3√(x+2)2+(iy)2
6x2+1−6x−9y2=9(x2+4−4x−y2)
1−6x=36−36x
6x=7
Hence, the required result is found.