If z=x+iy and ω=1−izz−i , then |ω|=1 implies that, in the complex plane z lies on the real axis.
Open in App
Solution
|ω|=1⇒∣∣∣1−izz−i∣∣∣=1 ⇒|1−zi|2=|z−i|2 ⇒(1−iz)(1+i¯¯¯z)=(z−i)(¯¯¯z+i) ∵¯¯¯¯¯iz=¯i¯¯¯z=−i¯¯¯z ⇒1−iz+i¯¯¯z+z¯¯¯z=z¯¯¯z+iz−i¯¯¯z+1 ⇒2i(z−¯¯¯z)=0⇒2i(2iy)=0⇒y=0, which is the equation of real axis.