The correct option is A [0, 4]
z=x+iy
And |z|2=16
|z|=4
If z is purely real, x=±4 and ||x|−|y||=4 ...(i)
If z is purely imaginary y=±4i and ||x|−|y||=4 ...(ii)
Now if |x|=|y|
Thus
2x2=2y2=16
x=y=±2√2
Under such case
||x|−|y||=0
Hence the range of values of ||x|−|y|| is [0,4]