In a given Δ ABC, AB =20 cm, ∠A=30∘ as shown in figure. If the area of the triangle is 100cm2, then the length of AC is equal to
20 cm
In the given Δ ABC, AB = 20 cm, ∠A=30∘
Draw CD perpendicular to AB
Area of traingle =12×AB×CD=100
⇒12×20×CD=100
⇒CD=10cm
In ΔADC,∠ACD=180∘−(90∘+30∘)=60∘
In ΔADC angle are 30∘,60∘,90∘
⇒sin(30):sin(60):sin(90)
⇒12:√32:1
⇒1:√3:2
So, the sides CD, AD, AC will be in the ratio 1:√3:2
The corresponding sides are
30∘60∘90∘1:√3:2x:x√3:2xCDADAC↓↓↓1010√320
So AC =20 cm