wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In a parallelogram ABCD,AB=20 cm and AD=12 cm. The bisector of angle A meets DC at E and BC produced at F. Find the length of CF.

Open in App
Solution


Here, AB=20cm,AD=12cm
DC=AB=20cm
AD=BC=12cm
Bisector of A meets DE on E. Produced AE and BC to meet at point F. Extend AD to G. From F draw HFCD.
We have CDFH and CFDH.
DCFH is a parallelogram.
Also, ABFH and AHBF
ABFH is also parallelogram.
In AHF and ABF
AHF=ABF [ Opposite angles are equal ]
AF=AF [ Common side ]
HAF=FAB [ Since, AF divides HAB ]
AFHABF [ By AAS congruence ]
AB=AH [ CPCT ]
AB=AH=AD+DH=AD+CF [ Since, DAFH is a parallelogram ]
CF=ABAD=(2012) cm=8cm


1260553_1143956_ans_aa83a8cc83494b519d5f3463968005d5.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Tango With Straight Lines !!
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon