In a parallelogram PQRS, L and M are the mid-point of QR and B RS respectively Prove that: ar(ΔPLM)=38arPQRS)
Open in App
Solution
LM=12SQ [∵L and M are the mid-points] Area of ΔRLM=14(areaofΔSQR) [∵ The base LM is 12SQ and altitude of ΔRLM is 12 of altitude of ΔSRQ] In ΔPRQ, PL in the median ⇒ar(ΔPRL)=ar(ΔPLQ)=14ar(PQRS) In ΔPSR, PM is the median ⇒ar(ΔPSM)=ar(ΔPMR)=14ar(PQRS) Ar(PML)=ar(ΔPRL)+ar(ΔPMR)−ar(ΔMRL) =14ar(PQRS)+14ar(PQRS)−14(arΔSQR) =14ar(PQRS)+14ar(PQRS)−14(arΔPQRS) =(14+14−18)ar(PQRS) =(4−18)ar(PQRS) Ar(ΔPML)=38ar(PQRS)