In a trapezium ABCD, if AB || CD then (AC2+BD2) = ?
(a) BC2+AD2+2BC.AD
(b) AB2+CD2+2AB.CD
(c) AB2+CD2+2AD.BC
(d) BC2+AD2+2AB.CD
ANSWER:
(c) BC2+AD2+2AB.CD
Explanation:
Draw perpendicular from D and C on AB which meets AB at E and F, respectively.
∴ DEFC is a parallelogram and EF = CD .
In ∆ ABC, ∠ B is acute.
∴AC2=BC2+AB2−2AB.AE
In ∆ ABD, ∠ A is acute.
∴
BD2=AD2+AB2−2AB.AF
∴ AC2+BD2=(BC2+AD2)+(AB2+AB2)−2AB(AE+BF)
= (BC2+AD2)+2AB(AB−AE−BF)
[∵ AB = AE + EF + FB and AB - AE = BE ]
=(BC2+AD2)+2AB(BE−BF)
=(BC2+AD2)+2AB.EF
∴AC2+BD2=(BC2+AD2)+2AB.CD