The correct options are
A cotA,cotB,cotC are in A.P
C cos2A,cos2B,cos2C are in A.P
D asinA,bsinB,csinC are in A.P.
∵sinAsinC=sin(A−B)sin(B−C) ................(1)
⇒sin(π−(B+C))sin(π−(A+B))=sin(A−B)sin(B−C)
⇒sin(π−(B+C))sin(B−C)=sin(π−(A+B))sin(A−B)
⇒sin(B+C)sin(B−C)=sin(A+B)sin(A−B)
⇒sin2B−sin2C=sin2A−sin2B
⇒2sin2B=sin2A+sin2C
Hence, sin2A,sin2B,sin2C are in A.P. .............(2)
or −2sin2A,−2sin2B,−2sin2C are in A.P.
or 1−2sin2A,1−2sin2B,1−2sin2C are in A.P.
or cos2A,cos2B,cos2C are in A.P>
From (2)
sinAsinA,sinBsinB,sinCsinC are in A.P.
⇒a2RsinA,b2RsinB,c2RsinC are in A.P
⇒asinA,bsinB,csinC are in A.P
From (1)
sin(B−C)sinBsinC=sin(A−B)sinAsinB
⇒sinBcosC−cosBsinCsinBsinC=sinAcosB−cosAsinBsinAsinB
⇒cotC−cotB=cotB−cotA (on evaluation)
⇒2cotB=cotA+cotC
∴cotA,cotB,cotC are in A.P.