The correct option is B an equilateral
In a triangle
A+B+C=π
cosA+cosB+cosC=2cosA+B2cosA−B2+cosC=2cos(π2−C2)cosA−B2+1−2sin2C2=−2sin2C2+2sinC2cosA−B2+1
⇒−2sin2C2+2sinC2cosA−B2+1=32⇒4sin2C2−4sinC2cosA−B2+1=0⋯(1)
Now, we know that
sinC2∈R
Δ≥0⇒16cos2A−B2−16≥0⇒cos2A−B2−1≥0⇒cos2A−B2≥1
But cos2θ≤1, so
cos2A−B2=1⇒A=B
Using equation (1),
4sin2C2−4sinC2+1=0⇒(2sinC2−1)2=0⇒sinC2=12⇒C=π3
∴A=B=C=π3
Alternate solution:
By observation,
cosA=cosB=cosC=12
Satisfies the given equation
⇒A=B=C=60∘
Therefore, the triangle is equilateral triangle.