wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In a triangle ABC, if cotA+cotB+cotC=cotθ, then prove that sinAsinBsinC1+cosAcosBcosC=tanθ and the possible value of θ is 30o.

Open in App
Solution

1+cosAcosBcosC=cosAsinBsinC+cosBsinCsinA+cosCsinAsinB
E=sinAsinBsinCcosAsinBsinC+sinAcosBsinC+sinAsinBcosC
Divide above and below by sinAsinBsinC
E=1cotA+cotB+cotC=1cotθ=tanθ
2nd [art
cot2θ=cot2A+2cotBcotC
=12[2cot2A+4cotBcotC]
=12[(cotAcotB)2+2cotBcotC+4cotBcotC]
=12[6+(cotAcotB)2]
cotBcotC=1
=3+something+ive
cot2θ3 or tanθ13θ=30o.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon