In a triangle ABC if cotA=(x3+x2+x)12,cotB=(x−1+x+1)12 and cotC=(x−3+x−2+x−1)−12 then the triangle is
A
equilateral
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
isosceles
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
right angled
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
obtuse angled
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B right angled From above, We have cot(A+B)=cotAcotB−1cotB+cotA =(x3+x2+x)12(x+x−1+1)12−1(x3+x2+x)12+(x+x−1+1)12 =x12(x2+x+1)12.1x12((x2+x+1))12−1x12(x2+x+1)+1x12(x2+x+1) =((x2+x+1)12)2−1(x2+x+1)12(√x+1√x) =x2+x(x2+x+1)12(x+1)√x =x(x+1)√x√x2+x+1(x+1) =x√x√x2+x+1 =x32(x2+x+1)−12 =(x−1+x−2+x−3)12 =cotC ⇒A+B=C and A+B+C=π ⇒C+C=π ∴C=π2 Hence, the triangle is right-angled triangle