In a triangle ABC, if cotA=(x3+x2+x)1/2cotB=(x+x−1+1)1/2 and cotC=(x−3+x−2+x−1)−1/2, then the triangle is
cot(A+B)=cotAcotB−1cotA+cotB=√x3+x2+x√x+x−1+1−1√x3+x2+x+√x+x−1+1=x√(x+x−1+1)2−1(x+1)√x+x−1+1=x2+1+x−1(x+1)√x+x−1+1=x√x+x−1+1=1√x−3+x−2+x−1=cotC
⇒cot(A+B)=cotC⇒A+B=C⇒A+B−C=0
And in triangle A+B+C=π
Therefore, we get A+B=C=π2