In a triangle ABC, the value of sin2A+sin2B+sin2C is equal to:
4sinAsinBsinC
4cosAcosBcosC
2cosAcosBcosC
2sinAsinBsinC
Finding the value of sin2A+sin2B+sin2C in a triangle ABC.
In triangle ABC, A+B+C=180° ( sum of all the interior angles in any triangle is 180°)
So, 2A+2B+2C=360°
Now, solving for sin2A+sin2B+sin2C:
⇒sin2A+sin2B+sin2C=2sin2A+2B2cos2A-2B2+sin2C⇒=2sinA+BcosA-B+sin2C⇒=2sinA+BcosA-B+sin360°-2(A+B)⇒=2sinA+BcosA-B-sin2A+B⇒=2sinA+BcosA-B-2sinA+BcosA+B⇒=2sinA+B(cosA-B-cosA+B)⇒=2sinA+B(2sinAsinB)⇒=4sin180°-C2sinAsinB⇒=4sinCsinAsinB⇒sin2A+sin2B+sin2C=4sinAsinBsinC
Hence, Option (C) is correct.