The correct option is B 4 V
Relation between potential and electric field
dV=−→E.→dr.....(1)
Let
→E=Ex^i+Ey^j+Ez^k
→dr=dx^i+dy^j+dz^k
Apply equation (1) between (0,0,0) and (1,0,0)
∫Vat (1,0,0)V at (0,0,0)dV=−E∫1,0,00,0,0drV(1,0,0)−V(0,0,0)=−Ex×1
8−10=−Ex
Ex=2
Apply equation (1) between (0,0,0) and (0,1,0)
∫Vat (0,1,0)V at (0,0,0)dV=−Ey∫1,0,00,0,0drV(0,1,0)−V(0,0,0)=−Ey×1
8−10=−Ey
Ey=2
Apply equation (1) between (0,0,0) and (0,0,1)
∫Vat (0,0,1)V at (0,0,0)dV=−Ez∫1,0,00,0,0drV(0,0,1)−V(0,0,0)=−Ez×1
8−10=−Ez
Ez=2
So,
→E=2(^i+^j+^k)
Apply equation (1) between (0,0,0) and (1,1,1)
∫Vat (1,1,1)V at (0,0,0)dV=−∫1,1,10,0,0→E.→drV(1,1,1)−V(0,0,0)=−[2x|10+2y|10+2z|10
V(1,1,1)−10=−6
V(1,1,1)=10−6=4