The correct option is A 0
∵x2−9x+8=0
∴(x−1)(x−8)=0
∴x=1,8
2tan2B=1,8
⇒2tan2B=20,23
⇒tan2B=0,3
⇒tan2B≠0
∴tan2B=3
⇒tanB=±√3
∴∠B=60∘, 120∘(rejected)
Also, given 2cosA=sinBsinC
⇒2cosAsinC=sinB
Using compound angle formula, we have
⇒sin(A+C)−sin(A−C)=sinB
⇒sin(π−B)−sin(A−C)=sinB
⇒sinB−sin(A−C)=sinB
⇒sin(A−C)=0
⇒A−C=0 or A=C
Hence, A+B+C=1800
A+600+A=1800
∴2A=1800−600=1200
Hence, A=C=B=600
Hence the given triangle is equilateral.
So Incentre and circumcentre will coincide.