The correct option is
A (z2−z1)(z3−z1)AC=BC and ∠CAB=θ
z4 is the in center of the circle,
then the value of (z4−z1)2(1+cosθ)secθ
We have arg(z2−z1z4−z1)=−arg(z3−z1z4−z1)
By applying coni's method,
⇒(z2−z1)|z2−z1|.eiQ/2=(z4−z2)|z4−z2|
(z1−z2)|z1−z2|.eiQ/2=(z1−z4)|z1−z4|
By applying the law of since to △ACI where I(zu) gives
⇒|z4−z1|sin(π2−θ)=|z3−z1|sin(π2+θ2)
⇒z2−z1z4−z1z3−z1z4−z1=∣∣∣z2−z1z4−z1∣∣∣∣∣∣z3−z1z4−z1∣∣∣
=2cos2θ2cosθ=cosθ+1cosθ=1+secθ
⇒z2−z1|z2−z1|.e±iQ/2=z4−z1|z4−z1|=z3−z1|z3−z1|.e±iQ/2
=(z2−z1)(z3−z1).
Hence, the answer is (z2−z1)(z3−z1).