The correct option is C cos(A−B2)sin(C2)
We know asin(A)bsin(B)=csin(C) (From Sine rule)
asin(A)bsin(B)=csin(C)=k (Let's say)
a = k sin(A) , b = k sin(B) and c = k sin(C)
So, a+bc=k(sinA+sinB)ksinC
=sin(A+B2).cos(A−B2)sin(C2).cosc2
Since, A+B=π−C
sin(A+B2)=cos(c2)
=cos(C2).cos(A−B2)sin(c2).cosc2
=cos(A−B2)sin(C2)