Consider the given equation.
sin(A−B)sin(A+B)=a2−b2c2
L.H.S.,
sin(A−B)sin(A+B)=sin(A−B)sin(A+B)×sin(A+B)sin(A+B)
=sin(A−B)sin(A+B)sin2(A+B)=sin2A−sin2Bsin2(π−c)
Put, sinA=ak,sinB=bk and sinC=ck.
sin2A−sin2Bsin2(π−c)=a2k2−b2k2c2k2
=k2(a2−b2)c2=a2−b2c2=RHS
Hence, proved.