wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In any ABC prove the following:
(i)a sinAb sinB=c sin(AB)
(ii)cb cosAbc cosA= cosB cosC
(iii)a2 sin(BC)=(b2c2) sinA
(iv)(ab)(a+b)=tan(AB2) tan(A+B2)
(v)a cosBbc cosA=(a2b2)

Open in App
Solution

(i) asinAbsinB=2R(sin2Asin2B)=(2RsinC)(sin(AB))=csin(AB)

(ii) cbcosAbccosA=acosBacosC=cosBcosC

(iii) a2sin(BC)=4R2sin2Asin(BC)
=[4R2sinA]sin(B+C).sin(BC) sinA=sin(B+C)]

=[4R2sinA][sin2Bsin2C]

=[(2RsinB)2(2RsinC)2]sinA

=(b2c2) sinA

(iv) (ab)(a+b)=sinAsinBsinA+sinB=2sin(AB2)cos(A+B2)2sin(A+B2)cos(AB2)=tan(A+B2)tan(A+B2)

(v) acosBbccosA=2R[sinAcosBsinBcosA].2RsinC
=4R2sin(AB)sin(A+B)

=4R2(sin2Asin2B)[a=2RsinA]

=(a2b2)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Conditional Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon