In Δ ABC, ∠ A=50∘, ∠ B=70∘, AB=6 cm. The length of 2 sides BC and AC are [sin 50∘=0.77, sin 60∘=0.87 sin 70∘=0.94]
5.313 cm, 6.486 cm
Draw diameter AD passing through center O and connect DB
In Δ ABD, ∠ D=60∘ (Angle subtended by the same chord AB)
∠ DBA=90∘ (Angle subtended by the diameter on the circumference)
In Δ ABD
sin 60∘=ABAD.
AD=d=ABsin 60∘,=60.87=6.9 cm ...(1)
Now, in triangle ABC, using sine rule
BCsin 50=ABsin 60∘
⇒ BCsin 50∘=d=6.9 cm from ...(i)
BC=6.9×sin 50∘=6.9×0.77=5.313 cm
Similarly
ACsin 70∘=ABsin 60∘
ACsin 70∘=d=6.9 cm from ...(i)
AC=d sin 70∘
AC=6.9×0.94=6.486 cm