In ΔABC, ∠B=35∘, ∠C=65∘ and the bisector of ∠BAC meets BC in P. Arrange AP, BP and CP in descending order.
In ΔABC, ∠B=35∘, ∠C=65∘ and AP is the bisector of ∠BAC which meets BC in P.
Arrange PA, PB and PC in descending order
In ΔABC,
∠A+∠B+∠C=180∘
(Sum of angles of a triangles)
⇒ ∠A+35∘+65∘=180∘⇒ ∠A+100∘=180∘∴ ∠A=180∘−100∘=80∘∵ PA is a bisector of ∠BAC∴ ∠1=∠2=80∘2=40∘Now in ΔACP, ∠ACP>∠CAP⇒ ∠C>∠2∴ AP>CP ...(i)Similarly, in ΔABP.∠BAP>∠ABP⇒ ∠1>∠B∴ BP>AP ...(ii)From (i) and (ii)BP>AP>CP