In ΔPQR, MN||QR and MN divides the triangle into two park of equal areas. QMPQ=??
√2−1√2
Since, MN||QR,
∠PMN=∠PQR (corresponding angles)
∠PNM=∠PRQ (corresponding angles)
Hence, by AA similarity,
ΔPMN∼ΔPQR.
We know that
Area(ΔPMN)Area(ΔPQR)=PM2PQ2=MN2QR2=PN2PR2
Since, Area (ΔPMN) =Area (quad. MNRQ) [Given],
We can say.
Area(ΔPMN)(ΔPQR)=12
or PMPQ=1√2⇒1−PMPQ=1−1√2
⇒PQ−PMPQ=√2−1√2
⇒QMPQ=√2−1√2