In ΔABC a,c and A are given and b1,b2 are two values of the third side b such that b2=2b1 Then prove that sinA=√9a2−c28c2
Given:
In ΔABC,
a,c and c are three sides.
b1,b2 are two values of the third side b.
b2=2b1
To prove: sinA=√9a2−c28c2
Proof:
We know that,
cosA=b2+c2−a22bc
(or) b2−2bccosA+(c2−a2)=0
It is given that b1,b2 are the roots of this equation.
⇒b1+b2=2ccosA, and b1b2=c2−a2
3b1=2ccosA and
2b21=c2−a2(∵b2=2b1given)
2(2c3cosA)2=c2−a2
⇒4ccosA=3(c2−a2)
⇒8c2cos2A=9c2−9a2
⇒8c2(1−sin2A)=9c2−9a2
⇒1−sin2A=9c2−9a28c2
⇒sin2A=1−9c2−9a28c2
⇒sin2A=8c2−(9c2−9a2)8c2
⇒sin2A=9a2−c28c2
⇒sinA=√9a2−c28c2
Hence, proved.